

I. Goals of Project

To develop a model of the <u>causes</u> of breast cancer that shows:

- 1. Multilevel nature of causation
- 2. Accessible to a "sophisticated lay audience"
- 3. Adaptable to add additional factors
- 4. Recognize feedback and interrelationships between causes

II. Background

Lots of ways to create and use "models":

- Illustrate pathways
- Illustrate relationships and networks
- Prediction models
- Simulation models
- Complex systems models

III. Creation of First Model

- 1. Bring together committee of experts on breast cancer and complex systems modeling
- 2. Three meetings over the course of 1 year
- 3. Iterative development of model of breast cancer causes
- 4. Feedback and input from external sources
- 5. Publication and dissemination
- 6. Adaptation of initial model

Expert Committee on Breast Cancer (and complex systems modeling)

Janice Barlow, RN - community advocate

Ana Diez-Roux, PhD - social epidemiologist, neighborhood

Lawrence Kushi, ScD - nutritional epidemiologist

Mark Moasser, MD - medical oncologist

Travis Porco, PhD - mathematical modeler

Zena Werb, PhD - cellular biologist, immunologist

Gayle Windham, PhD – environmental and reproductive health

Robert Hiatt, MD, PhD - cancer epidemiologist

Dejana Braithwaite, PhD - cancer epidemiologist

Galen Joseph, PhD - medical anthropologist

Allan Balmain, PhD - geneticist

David Rehkopf, ScD - social epidemiologist

Is This a New Prediction Model?

No. This is not intended to be a new prediction model like the Gail Model.

Then – what is it for? How does a prediction model differ from a model to understand the causes?

TABLE 2. RELATIVE RISK OF BREAST CANCER ACCORDING TO THE GAIL MODEL.*				
RISK FACTOR	RELATIVE RISE			
Category A				
Age at menarche				
≥14 yr	1.00			
12–13 yr	1.10			
<12 yr	1.21			
Category B				
No. of breast biopsies				
and woman's age				
0				
Any age	1.00			
1				
<50 yr	1.70			
≥50 yr	1.27			
≥2				
<50 yr	2.88			
≥50 yr	1.62			
Category C				
No. of 1st-degree relatives with				
breast cancer and woman's				
age at 1st live birth				
0				
<20 yr	1.00			
20-24 yr	1.24			
25-29 yr or nulliparous	1.55			
≥30 yr	1.93			
1 -20	2.41			
<20 yr	2.61			
20-24 yr	2.68 2.76			
25-29 yr or nulliparous	2.76			
≥30 yr ≥2	2.03			
<20 yr	6.80			
20 yr 20–24 yr	5.78			
25-29 yr or nulliparous	4.91			
≥30 yr	4.17			

Characteristics of the Model

- Gail model as standard of comparison
- However, purpose of Gail model is for prediction, not for <u>understanding causes</u>
- Build on Gail model in three primary ways
 - 1. Include causes at <u>multiple levels</u>
 - 2. Attempt to capture the <u>"black boxes"</u> in the Gail model
 - 3. Include <u>feedback & interrelation</u> among individuals
- <u>Limit</u> to selected important factors
- Population rather than individual model

IV. Presentation of the Model

Obtained external comments on the overall model from potential model users.

We have developed both a print and online version.

V. Results of Mathematical Model

Table 4. Rates of invasive postmenopausal breast cancer incidence with SDs by age category and race/ethnicity for risk factors in mathematical model for women \geq 55 years of age and estimated impact of a change (degree change) at the population level of selected modifiable risk factors on incidence per 100,000 women by age at diagnosis and race/ethnic group, California, 2009

Predictive factor	Degree change	Total (White, Black, Latino)	SD	55-64 y	SD	65-74 y	SD	75+ y	SD	White	SD	Black	SD	Latina	SD
Total observed		379		314		451		423		430		379		254	
Total simulated		393.0	0.8	306.9	1.3	452.7	1.8	450.9	1.6	431.7	1.1	364.1	2.5	245.4	1.4
Excess BMI	50% decrease	384.4	0.8	300.4	1.2	442.6	1.7	440.9	1.5	423.3	1.0	349.4	2.4	238.3	1.4
	100% decrease	375.8	8.0	293.8	1.2	432.5	1.6	430.9	1.5	414.9	1.0	334.7	2.2	231.2	1.3
Alcohol consumption	25% decrease	391.9	8.0	305.9	1.3	451.4	1.7	449.7	1.6	430.5	1.0	363.5	2.5	244.3	1.4
	50% decrease	389.5	0.8	303.9	1.3	448.7	1.7	447.1	1.6	427.5	1.0	362.5	2.5	243.6	1.4
Tobacco use: % of population	25% decrease	392.0	8.0	305.8	1.3	451.5	1.8	450.1	1.6	430.5	1.1	362.9	2.5	244.8	1.4
	50% decrease	390.9	0.8	304.6	1.3	450.3	1.7	449.4	1.6	429.3	1.1	361.8	2.5	244.3	1.4
Age at menarche	1 y increase	377.4	8.0	294.3	1.2	434.5	1.7	433.5	1.5	415.3	1.0	346.9	2.4	233.5	1.4
	1.5 y increase	371.7	0.8	289.8	1.2	428.0	1.7	427.0	1.5	409.1	1.0	341.4	2.4	229.8	1.3
HT: % of population	50% decrease	288.3	0.7	225.2	1.1	332.1	1.6	330.7	1.4	316.7	1.0	267.1	2.3	180.0	1.3
	100% decrease	183.7	0.4	143.4	0.6	211.5	0.8	210.7	0.7	201.7	0.5	170.1	1.2	114.7	0.7

¹Rates were simulated from 100,000 persons with 800 iterations, and were age adjusted to the 2,000 U.S. Standard Population (19 age groups - Census P25-1130: http://www.census.gov/prod/1/pop/p25-1130/p251130.pdf). The simulated incidence rates were from one parameter set using the average value in Table 3.

Results of Mathematical Model

Predictive Factor	Population	Rate (Age – adjusted)/ 100K
Total Stimulated Rate	All California women 19+	393
50% reduction in excess BMI	All California	384
100% reduction in excess BMI	All California	376
50% reduction in tobacco use	All California	288
50% reduction in alcohol use	All California	390
50% reduction in HT use	All California	288
1 yr decrease in menarache	All California	327
Total rate	75+ women	451
Total rate	White women	432
Total rate	Black	364
Total rate	Asian	245

For More Details...

Hiatt RA, Porco T, Liu F, Balke K, Balmain A, Barlow J, Braithwaite D, Diez-Roux A, Joseph G, Kushi L, Moasser M, Werb Z, Windham G, Rehkopf D. A multi-level complex systems model of breast cancer incidence. *Cancer Epidemiol Biomarkers Prev* 2014 Oct;23(10):2078-2092. PMID: 25017248.

Online Version on CBCRP Website

http://www.cbcrp.org/research-topics/causal-model.html

VI. Next Phase - Paradigm II

New 2-year grant from CBCRP to expand model to:

- Premenopausal women
- Include interactions agent based model
- Integrate animal study results
- New expert team

Expert Committee for Paradigm II

Janice Barlow, RN – community advocate

Krisida Nishoka, LLD - breast cancer advocate

Travis Porco, PhD - mathematical modeler

Lee Worden, PhD - programmer/modeler

Robert Hiatt, MD, PhD - cancer epidemiologist

David Rehkopf, ScD - social epidemiologist

John Witte, PhD - genetic epidemiologist

Sue Fenton, PhD - environmental health biologist

Martyn Smith, PhD - toxicologist/molecular epidemiologist

Mellissa Troester, PhD - molecular epidemiologist/breast cancer

Sarah Gehlert, PhD – anthropologist/transdisciplinary science

Ross Hammond, PhD - complex systems modeler

George Kaplan, PhD - social epidemiologist

Tom McKone, PhD - environmental science/toxicologist

Natalie Engmann, MPH - epidemiology graduate student

Agent Based Model

- Woman is agent
- Population frame is California
- Lifecourse approach
- Building a simple model based on known risk factors and biology
- Key questions relate to:
 - Obesity
 - Environmental chemicals
 - Disparities

Finis